CHEMICAL QUALITY OF BOTTOM SEDIMENT SAMPLES FROM MOBILE BAY, ALABAMA

Prepared for the Alabama Coastal Area Board

Under Agreement No. CAB 80-08 and GSA Contract No. 80-3052

by

A. M. Malatino Chief, Geochemical Water Quality Research Division

Geological Survey of Alabama
Tuscaloosa, Alabama

September 1980

CHEMICAL QUALITY OF BOTTOM SEDIMENT SAMPLES FROM MOBILE BAY, ALABAMA

Prepared for the Alabama Coastal Area Board

Under Agreement No. CAB 80-08 and GSA Contract No. 80-3052

bу

A. M. Malatino Chief, Geochemical Water Quality Research Division

> Geological Survey of Alabama Tuscaloosa, Alabama

> > September 1980

245411, 5' ,53. M35'

"The preparation of this document was financed in part through a Federal grant from the Office of Coastal Zone Managment, National Oceanic and Atmospheric Administration as authorized by the Coastal Zone Management Act of 1972; administered by the Alabama Coastal Area Board."

CHEMICAL QUALITY OF BOTTOM SEDIMENT SAMPLES FROM MOBILE BAY, ALABAMA

I. INTRODUCTION AND PURPOSE

Mobile Bay constitutes the primary depositional basin for more than two-thirds of the surface area of Alabama. The rivers discharging into the Bay drain a watershed of more than 43,000 square miles sending large amounts of water and sediment into a relatively small area.

A study was conducted in 1979 to determine the mineralogy and spatial variation of clay species within Mobile Bay (Isphording, 1979). The textural distribution of Bay sediments obtained in the Isphording, 1979, study was used in selecting the sampling stations for this investigation.

The purpose of this study was to determine the concentration and spatial trend of selected chemical constituents (metals, nutrients, organics, and pesticides) in the Mobile Bay sediments. An understanding of the chemical composition of the sediment will help provide basic information needed for a comprehensive picture of the quality of the estuarine environment.

II. STUDY METHODS

The study area is defined as Mobile Bay, extending from U.S. Highway 90 on the north to Dauphin Island on the south. The sampling stations were located by the Loran C navigation map system. One-meter core samples of the Bay bottom were taken with a 3-inch diameter PVC plastic-lined Phleger core sampler at 60 sites in Mobile Bay (see location map in pocket). Samples collected at 20 of these sites were separated into top and bottom samples to provide

greater detail on the vertical distribution of chemical constituents. A total of 80 samples were collected, which included five additional samples in case of damage during transportation or while in the laboratory.

After the sediment samples were recovered, they were immediately transferred to polycarbonate bags and placed on ice at 4 degrees centigrade (°C) during transportation to the Geological Survey of Alabama Geochemical Laboratory in Tuscaloosa. The samples were then placed in a refrigerator and kept at 4°C until time of analysis.

The bottom sediment samples were analyzed for 19 metals, volatile solids, organic carbon, 12 pesticide species, and two nutrients (nitrogen (N) and phosphorus (P)).

Total recoverable metal analyses were performed by atomic absorption spectrophotometry after acid digestion, according to the U.S. Corps of Engineers (COE, 1976) and U.S. Environmental Protection Agency (USEPA, 1979) methods. Complete dissolution of all bottom material is not readily achieved by this digestion procedure and thus the determination represents less than 95% of the total amount present in the sample. Analyses for nutrients, organic carbon, and volatile solids followed EPA (USEPA, 1979) methods. Pesticides were analyzed by the U.S. Department of Health, Education and Welfare, Food and Drug Administration (USDHEW-FDA, 1977) procedures for detecting chlorinated hydrocarbons by Gas Chromatography equipped with dual electron capture.

III. RESULTS

The metal analyses of the bottom sediments were tabulated to

show spatial trends within the Bay (table A-1).

The concentration of aluminum in the Bay sediment samples ranged from 10 to 50 micrograms per gram ($\mu g/gm$).

Arsenic concentrations in the samples ranged from 1 to 14 $\,$ $\mu g/gm$.

Barium concentrations in the sediment ranged from 10 to 640 $\mu g/gm$. The highest concentration (640 $\mu g/gm$) occurred in the top 20 centimeters of sediment from station 6A, whereas the concentration in the bottom portion of the sample was approximately one-third of the upper concentration (240 $\mu g/gm$).

Cadmium concentrations in the sediment ranged from less than 10 to 10 $\mu g/gm$.

Calcium concentrations ranged from not detectable (ND) to $67,000 \, \mu \text{g/gm}$. The station with the highest calcium level corresponded to the station (station 6A - top) with the highest barium level.

The concentration of cobalt in the sediment ranged from less than 5 to 30 $\mu g/gm$.

Iron concentrations in the sediment samples ranged from 2,000 to 42,000 $\mu g/gm$. The station with the highest iron concentration was number 16. The lowest iron concentration (2,000 $\mu g/gm$) in the Bay sediment samples occurred at station 46 in the northwest portion of Mobile Bay.

Lead concentrations in the sediment samples ranged from ND to less than 10 $\mu g/gm$.

¹ Micrograms per gram (µg/gm) is equivalent to milligrams per kilogram (mg/kg) which is also equal to parts per million (ppm).

Mercury concentrations in the sediment samples ranged from less than 0.2 to 1.1 $\mu g/gm$. The highest values occurred at station 10 (1.1 $\mu g/gm$), station 9A - bottom (0.9 $\mu g/gm$) and station 11 - top (0.9 $\mu g/gm$). Station 10 is located 1 mile east of Heron Bay and stations 9A and 11 are located in Bon Secour Bay, 4.3 and 8.8 nautical miles, respectively, due west of Cypress Point (location map).

Manganese concentrations in the Bay samples ranged from 12 to $1,600~\mu g/gm$. The highest level occurred at station 21 - bottom.

Magnesium concentrations in the Bay samples ranged from 80 to $7,200~\mu g/gm$. The highest magnesium level occurred at three stations $(1-top,\ 21-bottom,\ and\ 26-top)$.

Selenium concentrations in the Bay samples ranged from less than 1 to 1.0 $\mu g/gm$.

Silicon concentrations in the Bay samples ranged from 1 to 10 µg/gm. Concentrations would probably be higher if a caustic soluble method or hydrofluoric acid digestion procedure were used. However, since nitric and hydrochloric acids were used in the acid digestible procedure, sands were not totally dissolved. This should be kept in mind when reviewing the silicon data in this report. Total silicon may be a factor of 10 or more than the reported acid dissolved concentration.

Silver and titanium concentrations in the Bay sediment samples were all less than 10 $\mu g/gm$.

Strontium concentrations in the Bay sediment samples ranged from 10 to 390 $\mu g/gm$. The highest concentration occurred at station 6A - top.

Zinc concentrations in the sediment samples ranged from 40 to 1,200 µg/gm. The highest concentration occurred at station 44.

Copper concentrations in the Bay sediments ranged from 5 to $120~\mu g/gm$. The highest concentration occurred at station 1A.

Chromium concentrations ranged from ND to 90 µg/gm. The highest concentrations occurred at stations 9 - top and 9A - bottom.

The percent concentrations of nutrients (N and P), volatile solids, and organic carbon are given in table A-3. Nitrogen ranged from 0.0000 to .019 percent (%) in all 80 sediment samples. The highest percent nitrogen (.019%) or 190 μ g/gm occurred at station 1 - bottom.

Organic carbon ranged from .02 to .12. The highest percentage (.12%) occurred at stations 6A - top and 8A - top and bottom.

Phosphorus ranged from .0000 to .0019% in all Bay sediment samples. The highest phosphorus percentage occurred at stations 9 - bottom and 9A - bottom.

Volatile solids ranged from 0.2 to 9.1%. The highest percentage of volatile solids occurred at station 9A - top.

Of the 12 pesticide species analyzed in the sediment samples, Lindane, Heptachlor, Aldrin; p, p'-DDD; p,p'-DDE; Polychlorinated biphenyl (PCB 1254), PCB 1260, Heptachlor epoxide, Pentachlorophenol (PCP), Dieldrin, and Endrin were the species identified and quantified by Gas Chromatography (table A-2).

Lindane concentrations ranged from ND to 2.01 $\mu g/kg$ per dry weight. The highest level occurred at station 9A - top.

Heptachlor concentrations ranged from ND to 3.66 $\mu g/kg$. The highest level occurred at station 49.

Aldrin concentrations ranged from ND to 1.22 $\mu g/kg$. The highest value occurred at station 49, west of Little Sand Island at the mouth of the Mobile River.

The concentration of p, p'-DDD ranged from ND to .88 $\mu g/kg$. The highest value occurred at station 49 with station 47 having .87 $\mu g/kg$ of DDD.

The p,p'-DDE concentrations for the Mobile Bay sediments ranged from ND to 2.66 μ g/kg. The highest value occurred at station 9A - top. Only 5 of the 33 sediment samples had DDE present.

There was no DDT present in any of the 33 sediment samples.

The concentrations of PCB 1254 and PCB 1260 ranged from ND to 1.09 and ND to 1.02 $\mu g/kg$, respectively. The highest concentration of PCB 1254 occurred at station 37. The highest level of PCB 1260 occurred at station 9A - top.

The concentration of Heptachlor epoxide in the bottom sediment samples ranged from ND to .99 µg/kg. The highest Heptachlor epoxide concentration occurred at station 37.

The identification of PCP occurred at four sampling stations (16, 27, 35, and 45). Station 27 had the highest PCP level at 1.30 $\mu g/kg$.

Dieldrin concentrations ranged from ND to 4.18 µg/kg. The highest concentration occurred at station 45 approximately 2.8 miles south of the Causeway at Battleship Parkway (U.S. Highway 90) in the upper northwest section of the Bay.

Endrin was identified at seven stations. Stations 27 and 25 - bottom had the highest Endrin concentrations of 1.38 and 1.03 $\mu g/kg$, respectively.

IV. DISCUSSION

The process of sedimentation in the Mobile Bay area is dependent on many physical variables such as fresh-water currents, tidal movements, depth, wind and bottom topography. The sediment samples were analyzed for a broad spectrum of metals and pesticides to identify areas that are high in deposits of toxic materials. The accumulation of such toxic materials over a period of time would be detrimental to the life of the estuarine environment.

The samples were found to consist primarily of compounds of four (4) elements: calcium, magnesium, iron, and manganese (Table A-1). These elements are naturally occurring and are classified as non-critical (Brownlow, 1979). The occurrence of high concentrations of these elements were uniformly distributed throughout the area. Concentrations of the toxic metals cobalt, copper, zinc, arsenic, selenium, silver, cadmium, mercury, and lead, were low and their occurrences were distributed uniformly throughout the study area.

Titanium was found in low concentrations in the samples. Low concentrations of barium were also noted in each sample. The remaining metals, aluminum, strontium, and silicon (noncritical elements), were found in low concentrations.

Nitrogen, phosphorous and carbon appeared in low concentrations and were equally distributed in all samples.

Volatile solids concentrations were found to be relatively uniform throughout the Bay area (Table A-2).

The pesticide analyses included identifying and quantifying 11 pesticide species that were widely distributed (Table A-3). Four pesticide species: Aldrin, PCB 1254, Dieldrin, and Endrin, were

dominant in occurrence. The occurrence may indicate less than ideal conditions of any pesticides, however, no spatial trends were established by the data.

This study provides reasonably comprehensive background data on present levels and concentration areas of chemical elements in the Bay sediments; future sampling and analysis might be done within the Bay as additional areas of inquiry are identified and funding permits.

REFERENCES

- Brownlow, Arthur H., 1979, Geochemistry: Boston University, Prentice-Hall, Englewood Cliffs, N.J., p. 256.
- Isphording, Wayne C., and Lamb, George M., 1979, The sediments of Mobile Bay: a report for the Alabama Coastal Area Board, 23 p.
- U.S. Department of Health, Education and Welfare, Food and Drug Administration, 1977, Analysis of pesticide residues in human and environmental samples: vol. 1, Springfield, Virginia, Nat'l. Tech. Inf. Serv., Reproducers.
- U.S. Army Corps of Engineers, 1976, Ecological evaluation of proposed discharge of dredged or fill material into navigable waters: U.S. Army Corps of Engineers, Mobile, Alabama District, Misc. Paper D-76-17, 33 p.
- U.S. Environmental Protection Agency, 1979, Method for chemical analysis of water and wastes: Cincinnati, Ohio, Environmental Monitoring and Support Laboratory, Environmental Research Center, 298 p.

CHEMICAL DATA

(Tables A-1 through A-3)

Table A-1 - Chemical Concentrations of Bottom Sediment Samples Collected from Mobile Bay, Alabama, June 15 through 21, 1980.

6/6n																		
muimond)	40	30	20	10	5	10	10	5	NO	< 5	30	30	20	30	10	10	20	
na\a Copper	120	100	70	40	40	20	80	20	40	20	70	50	20	9	30	30	50	
Titanium Ug\gu	< 10	<10	<10	< 10	< 10	~ 10	< 10	< 10	<10	<10	<10	<10	<10	< 10	<10	<10	<10	
oniz g\gu	160	180	130	100	06	120	110	150	100	160	140	240	340	140	80	110	80	
muitnort2 p\gu	40	20	110	80	06	9	20	20	40	20	9	9	70	70	390	180	180	
Silver ug/g	<10	<10	<10	< 10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	< 10	
nooilic ug/gu	-		2	-	7		2 .		1	٦,	2	2	2	2		2	2	
Selenium Vg/g		⊣.		1	г	7	1	1	1	7	7	-	7	-	-		7	
muisənpaM muisənpaM	5200	7200	0099	0099	5800	7000	7000	0099	2800	0099	7000	6400	5800	6400	4600	2600	5200	
nd\d Wsudsuese	929	1000	720	920	720	640	929	940	920	700	1300	1100	800	800	460	580	920	
Mercury ug/g	0.5	0.4	0.4	0.4	0.3	0.2	0.2	0.4	0.3	<0.2	0.3	0.3	0.2	0.2	<0.2	0.3	0.2	
Lead Lead	<10	*ON	2	Q.	Q	8	Q.	S	2	8	<10	9	Q.	Q.	QN Q	Q	QQ	
lron ug/g	34000	37000	31000	33000	40000	36000	41000	41000	35000	39000	38000	38000	31000	35000	21000	26000	24000	
nä\8	30	30	20	20	50	20	30	50	50	30	30	20	20	50	10	50	10	
muistad p\pv	2200	3200	12000	8200	12000	4000	4000	3800	2200	3000	3200	3800	0099	5400	67000	27000	36000	ctable.
മാ:imbeJ p\gu	<10	<10	<10	< 10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	< 10	<10	ot dete
muins8 ug/gu	50	8	20	100	09	100	30	30	20	20	40	20	20	20	640	240	320	but n
Arsenic U9/9	10	11	6	7	7	=	11	12	7	12	10	89	11	11	m	ტ	9	d for
աստլաս[Ք **8\ըu	10	50	20	50	10	21	.50	22	50	50	50	20	10	20	10	10	10	nalyze
	1-A	1-T0P	1-B0TT0M	2-TOP	2-BOTTOM	n	3-A TOP	3-A BOTTOM	47	4 TOP	4-80TTOM	5-T0P	5-B0TT0M	9	6A-10P	6A-BOTTOM	7-T0P	*ND - Specifically analyzed for but not detectable
STATION IDENTIFICATION NUMBER	24626-M	24627-M	24628-M	24629-M	24630-14	24631-M	24632-N	24633-M	24634-K	24635-M 4 TOP	24636-M	24637-M	24638-M	24639-M	24640-M	24641-M	24642-M 7-TOP	•NO - Spe

"" - specifically analyzed for but not detectable. **ug/g - micrograms per gram.

ķ

muimord) g\gu	50	30	30	80	06	80	80	90	80	80	80	70	30	09	20	09	20	80
f/6n Jeddog	20	30	93	90	40	90	40	9	20	09	20	40	09	20	90	30	40	40
muinstiT Q\gu	¢10	×10	~ 10	~ 10	<10	< 10	<10	<10	<10	<10	< 10	< 10	<10	<10	<10	<10	<10	<10
oni∑ g\gu	110	110	140	170	160	190	190	180	180	300	160	220	09	480	260	160	220	440
Strontium 9\gu	80	09	20	50	30	œ	70	50	40	99	30	30	20	50	50	50	30	20
Silver ug/gu	<10	<10	~ 10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Silicon ug/g	7	8	2	8	80	89	4	ស	m	10	თ	ø	-	cs	r.	4	2	ις.
Selenium ug/g	~	-	₹		-	7	1	-	7	-	-	П		-	-	1	-	-
muisangeM Q\gu	9200	2800	4800	0009	4800	2000	6200	5200	0099	0009	5200	0009	1600	4800	4600	4600	5200	5400
Manganes€	860	760	840	520	009	640	520	009	760	960	520	740	120	200	200	640	099	680
Mercury ug/g	<0.2	<0.2	0.2	0.2	0.2	<0.2	0.2	6.0	1.1	0.9	0.5	0.4	0.2	0.3	0.2	9.0	0.5	0.2
/ bead	Q.	QN Q	Q	<10	<10	< 10	<10	<10	<10	2	QN	8	QN	Q	Q	ON	QV	9
non! g\gu	30000	38000	34000	33000	35000	39000	38000	40000	36000	39000	40000	36000	7200	37000	36000	36000	36000	4 1000
Cobalt Cobalt	20	20	20	20	20	20	20	20	20	20	20	20	20	20	30	30	30	30
muisle) ug/gu	11000	4400	1800	Q	200	200	200	200	200	200	ND	20	20	20	200	200	200	200
muimbeJ 9\gu	< 10	¢10	< 10	10	<10	< 10	<10	10	< 10	<10	<10	<10	<10	07	10	10	10	10
muirs8 9\gu	.80	20	50	50	30	20	20	20	20	50	50	20	10	30	30	30	40	30
Arsenic ug/g	ص	11	11	10	11	10	12	12	11	12	11	11	က	12	11	13	11	14
muaimuſA g\ qu	10	50	50	20	40	20	20	20	90	20	20	40	10	40	40	40	40	20
AT 10N	7-B0TT0M	89	BA-TOP	вл-воттом	9 - T0P	9 BOTTOM	9A-TGP	9A-BOTTOM	10	11-TOP	11-BOTTOM	12	13/	13-TOP	13-BOTTOM	14	15-TOP	15 BOTTOM
STATION IDENTIFICATION HUNDER	24643-M	24644-M	24645-M	24646-M	24647-M	24648-M	24649-M	24650-M	24651-M	24652-M	24653-M	24654-M	24655-M	24656-M	24657-M	24658-M	24659-M · 15-TOP	24660-M

muimordJ ug/g	70	20	50	20	20	90	70	60	99	20	20	20	04	20	80	20	20	20
δ∕δn uəddoე	70	20	10	06	30	70	20	70	30	30	30	30	40	30	30	80	40	70
muinstiT e\eu	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10.	<10	<10
purz 6/6n	520	180	170	300	230	200	190	120	150	230	170	20	140	110	20	170	240	270
Strontium ug/g	20	30	20	. 02	20	20	23	40	20	09	20	09	90	190	140	09	20	99
navli2 ug\gu	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	< 10	<10	<10	<10 ·	<10	<10	<10	<10
na\a 21]{cou	2	2	4	9	9	ဗ	က	-	-								-	-
Selenium ug/g	~	-	~	₹	-	-		г	-		-	~	7	!	₹	-	-	-
mui sanpaM 9\pu	5200	2000	2400	2000	2600	4000	4600	5200	5800	7200	0009	5800	4200	1300	1400	2000	2600	7200
B/gu 8 saugsue w	920	640	340	840	880	480	260	480	940	1600	089	640	420	260	220	700	760	540
Mercury ug/g	4.0	0.3	<0.2	0.2	0.2	0.3	0.2	0.4	0.3	0.2	<0.2	0.2	0.2	<0.2	<0.2	0.2	<0.2	0.2
b ₆₉ d 9\gu	£	9	Q	QN	S	2	Q	Q.	9	2	9	9	8	2	9	Q.	8	QN
Iron ug/g	42000	39000	18500	32000	36000	34000	37000	31000	33000	40000	38000	39000	28000	0009	6400	34000	37000	38000
. g/gu	30	30	10	30	10	50	50	10	50	50	50	50	10	10	10	20	30	20
mui⊃fs∂ ug√g	200	200	200	200	200	200	200	1200	2400	3000	5400	4800	7400	26000	36000	43000	2200	4000
muimbeJ g\gu	10	10	< 10	10	<10	10	10	< 10	<10	< 10	< 10	< 10	<10	<10	<10	<10	< 10	<10
Bylgu	30	30	20	30	30	50	30	50	20	30	100	70	100	20	20	20	39	80
Arsenic ug/g	13	13	9	13	12	11	12	11	æ	Ħ	12	12	7	2	m	11	11	10
munimu∫A p\p u	40	40	20	30	40	10	20	20	20	20	40	40	40	40	50	30	30	40
VT 1.0N	16	17	17A	18-TOP	18 BOTTOM	19	20-10P	20-B0TT0M	21-TOP	21-B0TT0M	22-TOP	22-BOTTOM	23	24-T0P	24-BOTTOM	25-TOP	25-BOTTOM	26-T0P
STATION IDEHTIFICATION RUMBER	24661-M	24662-M	24663-M	24664-M	24665-M	24666-M	24667-M	24668-M	24669-M	24670-M	24671-M	24672-M	24673-M	24674-M	24675-M	24676-M	24677-M	24678-M

Chromium ug/g	20	90	30	8	30	22	8	80	91	40	20	20	39	10	40	40	50	40
f∕6n µəddoj	30	30	50	30	30	40	20	70	40	40	50	4	8	20	40	30	10	40
muinatiT ug√g	<10	<10	< 10	<10	×10	<10	<10	<10	<10	<10	<10	<10	<10	< 10	<10	· 10	<10	×10
oni∑ g∖gu	140	210	160	100	170	220	099	320	40	640	130	290	140	570	210	420	750	250
Strontium ug/g	9	09	30	50	09	09	20	40	40	40	20	09	20	20	40	40	20	40
Silver ug/g	4 10	<10	<10	<10	<10	410	< 10	<10	<10	<10	<10	<10	<10	¢10	<10	¢10	<10	<10
Silicon ug/g	-			н	-		~	-	-	-	2	-	-		1	-	7	2
Selenium P\pu	7	7	^1	~ 1	4	^1	٦	-	7	₽	4.	-	-	-	~	-	~	æ
Magnesium Q\gu	0099	7000	3000	1300	4200	9009	4000	4800	400	4400	2600	6200	3600	840	4400	4400	2000	4200
Manganese	640	1500	280	180	640	640	400	800	99	180	099	460	110	820	980	480	420	720
Mercury ug/g	0.2	0.3	<0.2	0.2	0.2	0.2	0.2	0.2	0.3	0.3	<0.2	0.2	<0.2	<0.2	<0.2	0.2	0.2	<0.2
6/6n peə 7	욷.	§,	·8	9	Q.	S	운	문	8	용	Q.	ND	9	NO	N	9	ON	R
lron ug/g	38000	41000	23000	9200	37000	35000	23000	32000	32000	17000	34000	25000	0099	3200	29000	17000	17000	29000
Cobalt ug/g	ဗ္ဂ	30	10	10	20	30	50	50	^	20	10	20	10	S	20	20	10	30
Calcium Ug/g	2200	2800	2000	NO	9400	4800	6400	2000	0009	2400	009	4200	5200	1800	1600	1800	1000	2800
muimbs) e\eu	¢10	<10	<10	<10	<10	<10	<10	¢10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Barium 19/9u	110	140	70	20	20	40	40	10	20	20	20	20	20	20	20	50	20	20
Arsenic Q\gu	ខ	Ø	7	3	11	ω	æ	σı	2	6	7	11	89	ო	10	70	ഹ	9
munim uſA g\gu	9	10	07	20	70	40	40	01	20	50	20	50	50	50	20	50	40	40
CAT 10N	26 BOTTON	27	28	59	30	31	32	32 A	33	34	35	36	37	38	39	40	41	.42
STATION IDENTIFICATION NUMBER	Z4679-M	24680-M	Z4681-N	24682-14	24683-M	24684-M	24685-M	24686-M	Z4687-M	24688-M	Z4689-M	24690-M	24691-M	24692-M	24693-M	24694-M	Z4695-M	24696-M

muiлотdЭ u9√9	10	50	40	10	10	۸ ری	۸ دی	10	ī,
6/6 n 6/6n	2	25	20	30	30	10	. 07	30	20
muinadiT Q\gu	<10	1 0	<10	<10	<10	<10	<10	<10	<10
oniz g\gu	066	1200	220	210	180	230	410	170	09
Strontiūm p\pu	10	30	40	120	40	50	10	40	10
Silver ug/g	<10	×10	<10	∢ 10	<10	<10	<10	<10	¢10
Silicon Ug/g	~	-	-	-		-		-	p=4
Selenium p\pu	-	~		. 1	7	7	^1	۲,	4
muizangaM g\gu	680	1900	4200	4400	440	900	80	260	180
Manganese	220	340	260	240	68	18	12	86	34
Mercury ug/g	<0.2	<0.2	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
pead bead	2	2	S	문	8	8	2	2	8
lron 9/gu	0009	14000	28000	2000	3000	3000	2600	5400	2400
Cobslt p\gu	3	10	50	ហ	S	10	A 72	10	10
muis∫s∂ ug√g	1400	4600	3600	3600	9200	5400	900	6800	2200
Cadmium Ug/gu	<10	<10	<10	¢10	¢10	<10	<10	<10	<10
muins8 e\eu	20	50	20	10	10	10	10	01	9
Arsenic uq∖gu	3	2	6	2	2	-	2	4	2
munimufA g∖gu	40	20	10	10	10	10	01	10	01
AT 1 ON	43	99	45	46	47	47A	48	49	20
STATION IDENTIFICA NUNDER	24697-M	24698-M A	24699-M	25700-M	25701-M	25702-M 4	25703-M A	24704-M A	24705-M 5

Table A-2 - Pesticide Concentrations in Micrograms rer Kilogram (U9/K9)

Dry Weight, from Bottom Sediments Collected at 33 Stations in
Mobile Bay, Alabama, June 15 through 21, 1980.

•									•							
Endrin	Q.	QN	S	Q.	N	QN .	.68	8	2	.29	ON ON	. 59	1.03	1.38	Q	ND
ninblaid	.29	QN	.57	QN	QN	.18	.61	.36	1.38	.48	ND	ND	1.00	.42	.72	06.
ЬСЬ	ON	Q.	QN	QN	Q N	Q Q	ND	N	.36	QN	ND	Q Q	N Q	1.30	O N	Z O
Heptachlor epoxide	Q.	Q N	S S	8	N	S	ND	Q N	QN Q	2	N	.43	.12	ND	QN	ON
.bcB 15e0	Q N	ON ON	문	1.02	NO	. 28	N	Q N	QN	8	. 51	.45	R	8	2	QN
bCB IS2⊄	QN	g	.26	N ON	2	.46	.62	QN	ND	.26	. 68	. 65	.86	Q	NO	, ON
100-'q.q	Q	QN	ND	Q N	ON	N	QN	ND	Q.	Q	Q	N	Q N	QN N	Q Q	QN
300-'q.q	ON	ND	QN	2,66	QN	ON	ND	ND	ON N	QN	ND	.13	2	Q N	2	. 46
000-'q.q	QN	Q	Q	ND	QN	2	Q Q	ND	QN	QN	ND	QN	ND	ON	ND	Q
nimbſA	.40	.15	.34	Q.	.77	.44	, 15	. 29	QN	. 39	. ON	. 22	.36	. 48	. 29	. 28
Heptachlor	.81	QN	ND	.31	.21	ON	ON	QN N	Q	QN	Q.	Q	QN	3.40	ND	. 28
- Anabail	Q	. 38	.12	2.01	Q.	QN	0H	QN	QN	QN	Q	Q Q	QN	.24	ND	.11
STATION IDENTIFICATION NUMBER	1-A	3-A BOTTOM	7 TOP	9-A TOP	11 TOP	13 TOP	14	15 TOP	16	17	19	23	25 BOTŤOM	27	28	29 TOP

*ND - Specifically analyzed for but not detectable.

ninb n 3	QN	ON	ON	QN	QN	N N	Q N	.47	Q N	S	N O N	QN	ON	.36	ND	QN	NO
nimbleid	.40	Q.	.15	.50	S	.23	.17	.38	09.	92.	O.	.12	N Q	4.18	.55	QN	.40
ьсь	NO	ON	ND	ND	.46	ON	N	Q N	ON C	ON	S	QN	ON O	.87	QN	MD	QN
ebotschlör epoxide	N	Q.	ND	Q.	Q _N	ND	66.	.10	Q	N N	98.	QN	.63	Q Q	QN	QN	Q
bcB ISeo	NO	ND	ON	ND	ON	.43	. 22	Q.	Q	ND	ON	QN	2	QN	.65	ON	QN
PCB 1254	.34	.37	QN .	QN	ND	NO	1.09	QN	Q Q	QN	QN	ND.	몽	ND	.18	ND	ND
700-'q.q	ON O	QN N	Q	S	ON	ND	QN	QN	Q N	QN	ON	QN	QN	Q.	Q	ND	QN
300-'q.q	QN O	.13	2	N O	QN	QN	Q N	QN	ND ND	ND	.92	ON	QN	ND	ND	NO	QN
. 000-,d'd	Q	QN	Q.	QN	QN	QN	QN	ND	Q	QN	QN	Q.	9	. 62	.87	QN	. 88
niabfA	.27	.28	.17	.21	. 25	. 14	.26	• 14	ND	.32	. 89	.71	. 75	.47	. 49	Q N	1.22
Heptachlor	S	QN	N ON	Q N	N	ON	. 25	ND	N	.25	ND	. 15	Q	QN	MD	ON	3,66
ensbai l	.21	Q Q	QN	O N	ND	QN N	.36	QN	9	.11	S	Q	.21	2	Q.	8	N
STATION IDENTIFICATION NUMBER	30	31	33	34	35	. 36	37	38	39	40	41	43	44	45	47	48	49

erpanic Carbon	Present in the	Bottom Sédiment. Ine 15 through 21	it collected 21, 1980	Collected from Mobile., 1980	Bay, Alab
STATION IDENTIFICATION NUMBER		% Organic Mitrogen	elitafoV % sbifo2	sunodqsod¶ %	SinsgrO % nodrsJ
24626-M	1-A	9000.	2.1	.0004	.07
24627-M	1 T0P	.0015	1.7	.0004	.07
24628-M	1 BOTTOM	.0190	3.1	.0004	.07
24629-M	2 TOP	.0017	3.1	.0004	.10
24630-M	2 BOTTOM	.0025	3.2	.0003	.07
24631-M	က	.0007	2.5	.0004	.11
24632-M	3-A TOP	.0014	3.0	.0004	.07
24633-M	3-A BOTTOM	.0022	4.9	.0004	.08
24634-M	4-A	.0019	4.1	.0003	60.
24635-M	4 TOP	.0023	5.2	9000.	.11
24636-M	4 BOTTOM	.0008	4.8	.0007	.08
24637-M	5 TOP	.0003	6.6	9000.	.11
24638-M	5 BOTTOM	.0002	2.9	.0005	.10
24639-M	9	.0008	6.9	.0005	60.
24640-M	6-A TOP	.0027	3.5	.0007	.12
24641-M	6-A BOTTOM	.0004	2.6	.0007	.10
24642-M	7 TOP	.0028	3.0	9000.	.10

	oinsgr0 % {	litaloV % '	phosphc .	oinegr0 % o
7 BOTTOM	8000.	3.6	.0003	.09
∞.	.0014	4.0	.0005	.09
8-A T0P	.0024	3.5	8000.	.12
8-A BOTTOM	.0021	4.0	.0005	.12
9 T0P	8000.	1.2	.0007	60.
9 BOTTOM	.0016	3.7	.0019	.11
9-A TOP	.0015	9.1	.0008	.10
9-A BOTTOM	.0019	4.6	.0019	60.
10	.0008	2.8	.0004	60.
11 TOP	.0024	4.1	0100.	60.
11 BOTTOM	.0015	3.9	6000.	.08
12	.0016	2.8	.0005	60.
13-A	.0013	1.0	.0002	90.
13 TOP	.0015	4.2	.0007	.08
13 BOTTOM	.0012	3.1	9000.	.08
14	. 0017	2.8	.0005	.08
15 TOP	.0014	2.9	.0003	60.
15 BOTTOM	.0017	3.1	.0005	.08
16	.0017	3.3	.0005	.07

oineg∀0 & nodreJ	.04	.07	60.	60.	.07	.08	.07	60.	60.	.08	60.	.08	90.	.05	.07	.07	90.	.07	.07
% Phosphoru:	.0013	.0003	.0008	.0007	.0016	.0005	.0007	.0017	9000.	6000.	.0010	.0003	.0001	.0001	.0003	.0002	.0002	.0004	.0005
∍ſijsſoV % ≳biſo2	3.3	1.7	3.6	.3.0	3.7	3.0	2.7	3.1	4.0	3.8	4.0	2.0	9.0	9.0	2.5	2.2	2.2	2.7	4.1
oinsgaN % Nitrogen	.0021	6000.	.0013	.0012	.0014	.0007	.0018	.0018	.0008	.0004	.0010	.0007	.0002	.0002	.0011	.0012	6000.	6000.	.0021
ATION	17	17-A	18 TOP	18 BOTTOM	19	20 TOP	20 BOTTOM	21 TOP	21 BOTTOM	22 TOP	22 BOTTOM	23	24 TOP.	24 BOTTOM	25 TOP	25 BOTTOM	26 TOP	26 BOTTOM	27
STATION IDENTIFICATION .NUMBER	24662-M	24663-M	24664-M	,24665-M	24666-M	24667-M	24668-M	24669-M	24670-M	24671-M	24672-M	24673-M	24674-M	24675-M	24676-M	24677-M	24678-M	24679-M	24680-M

Table A-3	Cont'd	นส์	e	snuc	ວ
STATION IDENTIFICATION NUMBER	ATION .	oinaga0 % Aitroge	litaloV % sbilo2	oydsoyd %	insgr0 % nodrsJ
24681-M	28	.0011	2.2	.0003	.07
24682-M	59	.0013	1.1	.0003	.05
24683-M	30	.0019	3.4	.0004	90.
24684-M	31	0000.	3.8	.0005	.07
24685-M	32	.0001	1.7	.0002	90.
24686-M	32-A	0000	3.5	.0008	.08
24687-M	33	0000.	0.4	.0001	.04
24688-M	34	0000.	4.3	9000.	.08
24689-M	35	0000.	1.4	.0002	.05
24690-M	36	.0004	2.7	.0005	90.
24691-M	37	.0000	2.7	.0007	• 05
24692-M		.0001	6.0	.0001	.04
24693-M	39	0000.	2.7	.0008	90.
24694-M	40	.0007	2.7	9000.	90.
24695-M	41	.0002	1.2	.0002	.04
24696-M	42	.0002	2.0	.0003	.05
24697-M	43	0000.	0.5	.0002	.02
24698-M	44	.0001.	1.6	.0004	90.
Z4699-M	45	0000.	2.7	.0003	.07

	o insp nodr	უ0 % გე	.07	.05	90.	.07	90.	.08	.04	.08	.05	90.	.05	.04	90.	90.	.04	.05	.02	90.	.07
	snuoudso	4d %	.0003	.0003	.0004	.0005	.0002	8000.	.0001	9000.	.0002	.0005	.0007	.0001	.0008	9000.	.0002	.0003	.0002	.0004	.0003
Taken inter-	itafi sbif		2.2	1.1	3.4	3.8	1.7	3.5	0.4	4.3	1.4	2.7	2.7	6.0	2.7	2.7	1.2	2.0	0.5	1.6	2.7
No. of the last of	ganic trogen	inO %	.0011	.0013	.0019	0000.	.0001	.0000	0000.	0000.	0000.	. 0004	0000	.0001	0000.	.0007	. 0002	. 0002	0000.	.0001	0000.
Secretary.																		•			
Carra Mi	Cont'd	NOI L	28	59	30	31	32	32-A	33	34	35	36	37	38	39	. 04	41	42	43	44	45
	le A-3 (IDENTIFICATION NUMBER	24681-M	24682-M	24683-M	24684-M	24685-M	24686-M	24687-M	24688-M	24689-M	24690-M	24691-M	24692-M	24693-M	24694-M	24695-M	24696-M	24697-M	24698-M	24699-M
The same of	Table	I DEP NUME	246	246	246	246	246	246	246	246	246	246	246	246	246	246	246	246	246	246	246
S No.			•	-																	

decourse.	% Organic nodreJ	.03	.02	.02	.04	.04	.02
-	sunodqsod4 %	0000	.0001	.0000	0000	.0001	.0001
	•	•	٠.	٠.	٠.	٠.	•
1	sbifo2	വ	က	2	2	2	2
	% Volatile	0.5	0.3	0.2	0.2	0.5	0.2
	% Organic Nitrogen	0003	9000	.0003	0012	0004	.0005
			•	•	•	•	•
1	Table A-3 Cont'd STATION IDENTIFICATION NUMBER	46	47	47-A	48	49	20
	Table A-3 Cont' STATION IDENTIFICATION NUMBER	24700-M	24701-M	24702-M	24703-M	24704-M	24705-M
Britani	Tat STF IDE	247	247	247	247	247	247

3 6668 14112917 3